

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	tei_transformer 0.8.1 documentation

Welcome to tei_transformer’s documentation!

Contents:

	Introduction
	Basic Usage

	Installation

	Requirements

	Customisation
	How things work

	Overriding an existing class, or adding a new one

	API
	Module contents

	Submodules

	tei_transformer.transform module

	tei_transformer.tags module

	tei_transformer.config module

Indices and tables

	Index

	Module Index

	Search Page

 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tei_transformer 0.8.1 documentation

Introduction

tei_transformer is a Python script for transforming a TEI-encoded critical edition into a pdf file. There are plenty of XSLT stylesheets to do something like this already, but using Python instead gives a secret advantage: we don’t really lose out on anything, but it’s unbelievably easy to customise things. We also don’t have to restrict ourselves to the xml tree; it’s very easy to bring in extra information or shift things about more easily. For example, a trick like adding a lemma note from an external data source for a person mentioned in the edition on their first appearance, then only indexing them on subsequent ones, is trivially easy rather than enormously complicated. (And is, in fact, something we do.)

Basic Usage

tei_transformer example.xml

This is pretty simple. The one proviso is that the script expects a folder called resources in the same directory as example.xml. This needs to contain a file called personlist.xml containing a list (in TEI-format) of people mentioned in the text and a BibLaTex file of references for citations called references.bib.

There’s also plenty of optional files you can include for things like introductions. You can change things like the filenames of these by providing a file ``config.yaml’’ in resources.

Of course, it’s also possible to skip all of this; and fit it into your own chain of events; simply getting a .tex file is as simple as:

from tei_transformer.transform import ParserMethods

xmlpath = 'example.xml'
parsed = ParserMethods.parse(xmlpath)
tree = parsed.getroot().find('.//{*}body')
transformed_tree = ParserMethods.transform_tree(tree)
text = '\n'.join(transformed_tree.itertext()).strip()

However, your project’s assumptions and requirements will almost certainly differ from the default assumptions, and it’s definitely a good idea to muck about with things and see what happens. See Customisation, or consider just downloading the very simple source and manipulating it as you choose.

Installation

pip install tei_transformer

Requirements

Files are parsed using lxml:

pip install lxml

The tex file produced needs pdflatex[http://latex-project.org/ftp.html] to produce a pdf file. The installation of tex which you use will also need the reledmac package and the Perl script latexmk. Most installations will have these in any case.

 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tei_transformer 0.8.1 documentation

Customisation

The nature of a critical edition is such that you’ll almost certainly have your own special requirements; and the nature of a TEI-encoding scheme is such that things are so very diverse it’s hard to make any assumptions about how an encoding works.

Because of this, you are very likely to want to either give new instructions for transforming a particular type of tag, or override the existing ones to meet your own requirements.

Fortunately, the whole reason this project exists is to make it very easy to do so.

How things work

We use a standard parser, lxml, to make sense of a tei-encoded lxml file. This parser reads tags according to a Python class, TEITag. Each type of tag (p, head, q, etc) is assigned to a class inheriting from TEITag which defines a property, target that is the same as the tag’s name, and also gives a method get_replacement, which is called to replace the tag in the new document with a string.

If the replacement is None, a tag is not replaced.

This seems quite complicated – and it can get as complicated as you like – but its usage is very simple. Here is, for example, is more or less the complete class SoCalled, which handles tags of the type <soCalled>

class SoCalled(TEITag):

target = 'soCalled'

def get_replacement(self):
 return "`%s'" % self.text

The only point which might need explanation is where self.text comes from; it is, of course, the text contained within the tag. Because the class SoCalled inherits from the class TEITag, and TEITag inherits from the class LXML.etree.ElementBase, all the methods available to ElementBase can be called to find out more about the tag. See the API documentation under TEITag to see what is available. These mean that any information from within the parse tree you want to find out is easily accessible.

For example, getting the attribute ‘hello_world’ for a tag is as simple as:

self.get('hello_world')

There is one proviso, though: unlike XSLT, tags are replaced one-at-a-time, rather than simultaneously. To make this a bit more logical, tags are not replaced in document order, but, weakly-sorted, by the number of descendants.

So you can always guarantee that a tag’s parent is still accessible (with self.getparent()), but its children or siblings may have already been replaced with text.

Several methods are also available for tags beyond those defined by lxml.etree; again, see the API documentation. The big ones are unwrap(), which unwraps a tag, and delete(), which removes it without replacement.

Overriding an existing class, or adding a new one

Almost certainly, you’ll be wanting to override things.

Tag handling classes are pretty simple, as above. What you want to do is rather than using the command deal with the classes making up the application instead.

Have a look at the source; it’s very short and kept deliberately simple rather than hyper-efficient.

 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	tei_transformer 0.8.1 documentation

API

Module contents

Submodules

tei_transformer.transform module

tei_transformer.tags module

tei_transformer.config module

 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	tei_transformer 0.8.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 tei_transformer	

 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	tei_transformer 0.8.1 documentation

Index

 T

T

 	

 	tei_transformer (module)

 Created using Sphinx 1.3.4.

 _static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		tei_transformer 0.8.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

