
tei_transformer Documentation
Release 0.8.1

Tom McLean

February 15, 2016

Contents

1 Introduction 3
1.1 Basic Usage . 3
1.2 Installation . 3
1.3 Requirements . 3

2 Customisation 5
2.1 How things work . 5
2.2 Overriding an existing class, or adding a new one . 6

3 API 7
3.1 Module contents . 7
3.2 Submodules . 7
3.3 tei_transformer.transform module . 7
3.4 tei_transformer.tags module . 7
3.5 tei_transformer.config module . 7

4 Indices and tables 9

Python Module Index 11

i

ii

tei_transformer Documentation, Release 0.8.1

Contents:

Contents 1

tei_transformer Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Introduction

tei_transformer is a Python script for transforming a TEI-encoded critical edition into a pdf file. There are plenty
of XSLT stylesheets to do something like this already, but using Python instead gives a secret advantage: we don’t
really lose out on anything, but it’s unbelievably easy to customise things. We also don’t have to restrict ourselves
to the xml tree; it’s very easy to bring in extra information or shift things about more easily. For example, a
trick like adding a lemma note from an external data source for a person mentioned in the edition on their first
appearance, then only indexing them on subsequent ones, is trivially easy rather than enormously complicated.
(And is, in fact, something we do.)

1.1 Basic Usage

tei_transformer example.xml

This is pretty simple. The one proviso is that the script expects a folder called resources in the same directory
as example.xml. This needs to contain a file called personlist.xml containing a list (in TEI-format) of people
mentioned in the text and a BibLaTex file of references for citations called references.bib.

There’s also plenty of optional files you can include for things like introductions. You can change things like the
filenames of these by providing a file ‘‘config.yaml” in resources.

Of course, it’s also possible to skip all of this; and fit it into your own chain of events; simply getting a .tex file is
as simple as:

from tei_transformer.transform import ParserMethods

xmlpath = 'example.xml'
parsed = ParserMethods.parse(xmlpath)
tree = parsed.getroot().find('.//{*}body')
transformed_tree = ParserMethods.transform_tree(tree)
text = '\n'.join(transformed_tree.itertext()).strip()

However, your project’s assumptions and requirements will almost certainly differ from the default assumptions,
and it’s definitely a good idea to muck about with things and see what happens. See Customisation, or consider
just downloading the very simple source and manipulating it as you choose.

1.2 Installation

pip install tei_transformer

1.3 Requirements

Files are parsed using lxml:

3

tei_transformer Documentation, Release 0.8.1

pip install lxml

The tex file produced needs pdflatex[http://latex-project.org/ftp.html] to produce a pdf file. The installation of tex
which you use will also need the reledmac package and the Perl script latexmk. Most installations will have
these in any case.

4 Chapter 1. Introduction

http://latex-project.org/ftp.html

CHAPTER 2

Customisation

The nature of a critical edition is such that you’ll almost certainly have your own special requirements; and the
nature of a TEI-encoding scheme is such that things are so very diverse it’s hard to make any assumptions about
how an encoding works.

Because of this, you are very likely to want to either give new instructions for transforming a particular type of
tag, or override the existing ones to meet your own requirements.

Fortunately, the whole reason this project exists is to make it very easy to do so.

2.1 How things work

We use a standard parser, lxml, to make sense of a tei-encoded lxml file. This parser reads tags according to a
Python class, TEITag. Each type of tag (p, head, q, etc) is assigned to a class inheriting from TEITag which
defines a property, target that is the same as the tag’s name, and also gives a method get_replacement,
which is called to replace the tag in the new document with a string.

If the replacement is None, a tag is not replaced.

This seems quite complicated – and it can get as complicated as you like – but its usage is very simple. Here is,
for example, is more or less the complete class SoCalled, which handles tags of the type <soCalled>

class SoCalled(TEITag):

target = 'soCalled'

def get_replacement(self):
return "`%s'" % self.text

The only point which might need explanation is where self.text comes from; it is, of course, the text contained
within the tag. Because the class SoCalled inherits from the class TEITag, and TEITag inherits from the class
LXML.etree.ElementBase, all the methods available to ElementBase can be called to find out more about
the tag. See the API documentation under TEITag to see what is available. These mean that any information
from within the parse tree you want to find out is easily accessible.

For example, getting the attribute ‘hello_world’ for a tag is as simple as:

self.get('hello_world')

There is one proviso, though: unlike XSLT, tags are replaced one-at-a-time, rather than simultaneously. To make
this a bit more logical, tags are not replaced in document order, but, weakly-sorted, by the number of descendants.

So you can always guarantee that a tag’s parent is still accessible (with self.getparent()), but its children
or siblings may have already been replaced with text.

Several methods are also available for tags beyond those defined by lxml.etree; again, see the API documentation.
The big ones are unwrap(), which unwraps a tag, and delete(), which removes it without replacement.

5

tei_transformer Documentation, Release 0.8.1

2.2 Overriding an existing class, or adding a new one

Almost certainly, you’ll be wanting to override things.

Tag handling classes are pretty simple, as above. What you want to do is rather than using the command deal with
the classes making up the application instead.

Have a look at the source; it’s very short and kept deliberately simple rather than hyper-efficient.

6 Chapter 2. Customisation

CHAPTER 3

API

3.1 Module contents

3.2 Submodules

3.3 tei_transformer.transform module

3.4 tei_transformer.tags module

3.5 tei_transformer.config module

7

tei_transformer Documentation, Release 0.8.1

8 Chapter 3. API

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

tei_transformer Documentation, Release 0.8.1

10 Chapter 4. Indices and tables

Python Module Index

t
tei_transformer, 7

11

tei_transformer Documentation, Release 0.8.1

12 Python Module Index

Index

T
tei_transformer (module), 7

13

	Introduction
	Basic Usage
	Installation
	Requirements

	Customisation
	How things work
	Overriding an existing class, or adding a new one

	API
	Module contents
	Submodules
	tei_transformer.transform module
	tei_transformer.tags module
	tei_transformer.config module

	Indices and tables
	Python Module Index

